
High-speed Encryption and Authentication

John Viega
viega@securesoftware.com

• Assume key exchange happened securely
• Message secrecy: What the attacker sees

reveals no new information about messages,
even if attacker can control some messages

• Message integrity: The recipient can detect
whether the message is in its intended form,
or whether there has been tampering

• MIC = Message Integrity Code (aka MAC)
• In reality, absolute assurance is not practical
• Integrity is more often important than

secrecy

Requirements

More potential requirements

• Efficient in software
– Not hard

• High speeds in hardware
– 10 Gigabits +
– Lowest cost best
– Requires parallelizability / pipelinability

• High assurance
– Provable security
– Minimal assumptions

• Fast setup
• Ability to check integrity of plaintext headers

A non-option

• “Encryption with redundancy”
• Depends on the redundancy function, but...
• Usually doesn’t work
• Attacks against many proposed schemes

– XOR message blocks
– XOR ciphertext blocks
– Kerberos PCBC mode

• Minimal redundancy: a secure keyed MIC

Composition Approaches

• Combine encryption and integrity schemes
• Select a suitable encryption mode and MIC
• Example: SSL/TLS

– Block ciphers run in CBC mode or RC4
– HMAC-SHA1 or HMAC-MD5

• How to combine primitives?
– Should be easy, but it isn’t!

• Three paradigms
– MAC-then-encrypt
– Encrypt-then-MAC
– Encrypt-and-MAC

• OpenSSL CBC ciphersuites had a timing attack

Generic Composition: Cipher modes

Mode Requirements Precomputable Parallelizable

CBC Random IV ✘ ✘

CTR Unique nonce ✓ ✓

OFB Unique nonce ✓ ✘

Nonces

• Data that is unique per-message
• Repeats must occur with very low probability
• Common contents

– Message counter
– Session ID
– Info uniquely identifying client/sender
– Random value

• Nonce bits can be valuable!
• Easy + good to throw in all possible

distinguishers

Generic Composition: MACs

MAC Parallelizable Hardware suitable Patent
free

HMAC ✘
✘

(Not high speed) ✓

CBC-MAC ✘
✘

❨Not high speed) ✓

UMAC ✓ ✘
(Too complex) ✓

XOR-MAC ✓ ✓ ✘

MAC Algorithms

• HMAC: choose a cryptographic hash function
– SHA1 or MD5
– MD5 is low assurance in many respects
– Security proof assumptions are “weak”

• XOR-MAC: choose hash or cipher
– Security proof assumptions are strong
– Hash function will generally be more efficient
– Block ciphers are fast enough
– Single primitive means fewer assumptions
– A bit slow in software, but okay

• Crypto community focuses on block ciphers
– AES much higher assurance than SHA1

• Only appropriate combo: CTR + XOR-MAC

Authenticated Encryption Schemes

• Single primitive for encryption and integrity
– One key (may turn into multiple keys internally)
– Good provable security
– Built upon a single cryptographic assumption

• OCB: Phil Rogaway et al.
– Great in software
– Very good in hardware
– Patented

• CCM: Whiting, Housley, Fergusen
• EAX: Bellare, Rogaway, Wagner

– Not appropriate for high-speed environments
– We’ll ignore these two
– Though, CCM is a FIPS standard

More Authenticated Encryption
Schemes

• CWC: Kohno, Viega, Whiting
– Combines a “universal hash” with AES-CTR
– Universal hash is built on multiplying 127-bit values
– Great on 64-bit platforms
– Good in hardware and 32-bit platforms
– Bad on 16-bit and 8-bit platforms

• GCM: McGrew, Viega
– Also based on universal hash plus AES-CTR
– Hash relies on GF(2128) multiplies
– Multiplies implemented with XORs
– Great in hardware
– Good in software (8K key-dependent tables)
– Minor refinements in the next 30 days

Feature Comparison

OCB CWC GCM CTR +
XOR-MAC

Software Best 32/64 Precomp Good

Hardware Excellent Okay Best Excellent

Keying 1 Key Subkeys 1 Key† 2 Keys*

Patent-
Free

✘ ✓ ✓ ✘

Nonce 16 bytes 12 bytes Any < 16 bytes

Associated
Data ✘* ✓ ✓ ✓**

Questions?

http://www.zork.org/gcm/
http://www.zork.org/cwc/

http://www.secureprogramming.com/

viega@securesoftware.com

